where κ is the specific conductance in ohm⁻¹ cm, corrected for the contribution of the solvent, and c is the concentration of electrolyte in mole kg⁻¹. TABLE 1.—MOLAL CONDUCTANCES IN METHANOL AT 25° C | electrolyte :
conc/mole kg ⁻¹ : | | sodium methoxide
0.000756 | piperidinium bromide
0.00106 | piperidine
0.0348 | |---|------|------------------------------|---------------------------------|----------------------| | press./atm | | | | | | 1 | 71.5 | 74.5 | 82.3 | 1.12 | | 1000 | 59.0 | 61.5 | 66.7 | 1.66 | | 2000 | 51.5 | 53.8 | 56.3 | 2.32 | | 3000 | 44.8 | 47:8 | 48.9 | 3.05 | | | | | | | TABLE 2.—MOLAL CONDUCTANCES IN METHANOL AT 45° C | | 0014 | Oua P | | | |-----------------|----------------|------------------|----------------------|------------| | electrolyte: | sodium bromide | sodium methoxide | piperidinium bromide | piperidine | | conc/mole kg-1: | 0.00930 | 0.0140 | 0.0110 | 0.3967 | | press./atm | | | | | | 1 | 80.5 | 80.8 | 86.0 | 0.344 | | 1100 | 67.9 | 70.2 | 75.3 | 0.520 | | 2500 | 56.4 | 58.3 | 62.7 | 0.84 | | 4000 | 46.7 | 51.4 | 52.5 | 1.25 | | 5400 | 42.6 | 46.3 | 44.3 | 1.73 | | 6800 | 38.0 | 43.8 | 39.0 | 2.34 | | 8200 | 31.7 | 37.9 | 30.5 | 2.68 | | 9600 | 26.5 | 32.7 | 25.8 | 3.18 | | 11000 | 23.1 | 28.0 | 22.5 | 3.56 | | 12000 | 19-9 | 24.0 | 20.0 | 3.79 | | | | | | | Table 3.—Change of molal conductance with concentration in methanol at $45^{\circ}\,\mathrm{C}$ | electrolyte pre | ssure/atm. | | | nore, c- 48 tite
intimiseinim | |----------------------|---------------------|--|---------------------------------|----------------------------------| | sodium bromide | 4 | mole kg ⁻¹ : 0.00
74·3
45·4 | 0.0075 0.00137
71.5
44.8 | 0·00269
69·6
44·2 | | sodium methoxide | conc/s
1
3000 | mole kg ⁻¹ : 0.00
70.5
45.9 | 0609 0·0140
64·1
44·4 | 0·0312
58·7
43·7 | | piperidinium bromide | 3000 conc/s | mole kg ⁻¹ : 0.00
84.9
48.6 | 0.00532 0.00216
78.4
47.5 | 0·00415
75·2
46·1 | | piperidine | 1
3000 | mole kg ⁻¹ : 0.03
1.11
3.05 | 18 0.620 | 0·4548
0·328
0·858 | ## IONIZATION CONSTANTS The ionization of piperidine in methanol is represented by the formula $$C_5H_{11}N + CH_3OH \Rightarrow C_5H_{11}NH^+ + CH_3O^-,$$ and the basic ionization constant K is defined as $$K = (a_{C_5H_{11}NH^+}) (a_{CH_3O^-})/a_{C_5H_{11}N}$$, the a's being molal activities. Tables 4 and 5 list values of K calculated from our experimental results by the method described previously,¹ Table 4.—Ionization constant of piperidine in methanol at 25° C | pressure/atm. | 106 K/mole kg ⁻¹ | pressure/atm. | 106 K/mole kg ⁻¹ | |---------------|-----------------------------|---------------|-----------------------------| | | 6.1 | 1000 | 21.9 | | 100 | 7·2 | 2000 | 56 | | 250 | 8.6 | 3000 | 126 | | 500 | 14.6 | | | Table 5.—Ionization constant of piperidine in methanol at 45° C | pressure/atm. | 106 K/mole kg-1 | pressure/atm. | 106 K/mole kg ⁻¹ | |---------------|-----------------|---------------|-----------------------------| | 1 | 2.8 | 6800 | 480 | | 1100 | 8.6 | 8200 | 860 | | 2500 | 38 | 9600 | 1400 | | 4000 | 103 | 11000 | 2300 | | 5400 | 240 | 12000 | 3100 | ## DISCUSSION ## CONDUCTANCES There are two marked differences between the high pressure behaviour of Λ' for strong salts in methanol and in water. In methanol, Λ' for a particular concentration is reduced much more by pressure than it is in water. Also, the concentration dependence of Λ' which is almost unaffected by pressure in water, is greatly reduced at high pressures in methanol. These changes can be judged from the effect of pressure upon the quantities Λ_0' and B' in the Kohlrausch relation, $$A'=A_0'-B'c^{1\over 2},$$ where c is the molal concentration of the salt and Λ_0 ' is its molal conductance at infinite dilution. Table 6 lists some values of Λ_0 ' and B' for the two solvents. Table 6.—The quantities Λ_0' and B' at 25° C | | electrolyte | pressure/atm. | A_0' | B'expt. | B'calc. | |---------------------------|---------------------------------------|---------------|------------|-----------|-----------| | (i) water as solvent: | KCI* | 3000 | 149
158 | 90
75 | 94
85 | | | KOCOCH ₃ † | 3000 | 113
117 | 80
87 | 85
75 | | (ii) methanol as solvent: | NaBr_‡ | 3000 | 79
46 | 190
44 | 171
83 | | 81280 03510
2510 05510 | C ₅ H ₁₁ NHBr ‡ | 3000 | 89
50 | 225
60 | 179
85 | ^{*} ref. (1). In water at 3000 atm, Λ_0' is slightly greater than it is at 1 atm; at higher pressures it decreases. In methanol, however, it shows a steady and much larger decrease over the whole range to 12,000 atm. This difference in behaviour is probably due to the greater relative increase in the viscosity ⁴ of methanol at high pressures. The experimental values of B' in table 6 are subject to fairly large uncertainties, possibly as much as ± 20 units at 3000 atm. Nevertheless they show clearly [†] measurements made as part of some earlier work (ref. (2)). [‡] this work.